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ABSTRACT 

 

  To facilitate the use of biomarkers in human health risk assessments, a biomarker 

decision support system is presented that systematically identifies, documents, validates, and 

incorporates biomarkers into occupational risk assessments.  A biomarker database structure was 

developed and decision rules were identified to organize the diverse types of data to support an 

occupational risk assessment for benzene.  A suite of biomarker validation approaches was 

applied to evaluate potential biomarkers of exposure and effects of exposure for benzene-induced 

acute myeloid leukemia (AML).  Traditional biomarker evaluation approaches based on the Hill 

criteria and regression analysis were coupled with a Bayesian network approach to validate (or 

discount) individual biomarkers and ultimately link the validated biomarkers along the exposure-

disease continuum.  Dose-response analyses using validated biomarkers were conducted to 

contrast various biomarker-based dose-response approaches.  Although multiple analysis and 

validation approaches are described in this benzene case study, it is envisioned that the system 

will be most useful as a set of options allowing the user to choose the analytical approach(es) 

appropriate to the data set and needs of the analysis.  Ultimately, this work aims to identify 

appropriate tools for critically evaluating biomarkers, as well as to provide a quantitative 

approach for linking changes in biomarkers of effect both to exposure information and to 

changes in disease response.  Such linkage can provide a scientifically valid point of departure 

that incorporates precursor dose-response information without being dependent on the difficult 

issue of a definition of adversity for precursors.     
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    INTRODUCTION 

 While it is difficult to trace the origin of the term “biomarker,” it is clear that biomarkers 

have found widespread use in contemporary biomedical sciences.  In 1989, the National 

Research Council on Environmental Studies and Toxicology defined a biomarker as any cellular 

or molecular indicator of toxic exposure, adverse health outcome or susceptibility (NAS/NRC, 

1989). That definition paved the way for a further delineation of biomarkers into three categories 

– biomarkers of exposure, effect and susceptibility.  While various disciplines foster unique 

applications of biomarkers to their special needs, a shared aspect is that the transformation from 

a measured biological endpoint to a validated biomarker with a specific public health application 

is a difficult and tedious process.  Albertini (2001) noted that the mere availability of biomarkers 

does not mean that they will be useful for human studies directed at public health issues, and that 

although many biomarkers have been identified, few have been validated to the point of known 

usefulness (Albertini, 1998).  Perera (2000) pointed out that although biomarkers can play a key 

role in cancer epidemiological studies, many studies failed to use validated biomarkers or 

employed study designs that did not adequately consider the biology of the endpoints.  

Established guidelines for biomarker validation exist (Barker, 2003; Schulte, 2005) and Schulte 

(2005) emphasized the importance of validation prior to use of biomarkers.  However, lack of 

validation has continued to be a key barrier to increased biomarker application in human health 

risk assessment (Maier et al., 2004).  The appropriate use of biomarker data is an ongoing issue 

in risk assessment, as noted by several authors (e.g., Paustenbach and Gailbraith, 2006).  

To attempt to address this barrier, we describe a biomarker decision support system 

(Figure 1) to facilitate the systematic identification, documentation, validation, and incorporation 

of biomarkers into occupational risk assessment.  The steps in the decision support system are a) 
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categorization of inputs; b) data evaluation; c) analysis and validation of biomarkers and dose-

response; d)  development of the risk assessment output.  For the case study demonstrating the 

application of the decision support system, we extracted biomarker data from public databases or 

the appropriate literature,1 integrated the data into a user-friendly biomarker database of our 

design, analyzed the biomarker data using a suite of validation tools, and demonstrated the 

contribution of biomarker data in the dose-response assessment for occupational exposure limit 

(OEL) development.  We focus on application of the concept to occupational risk assessment, 

since biomarkers of exposure have a rich history of use in this area and because there is 

significant potential for biomarkers to enhance the scientific underpinnings in the development 

of OELs.   

To test and demonstrate the decision support system for occupational safety and health 

applications, benzene was chosen as the case study chemical.  Benzene was chosen based on (1) 

the potential for occupational exposure, (2) severity of toxic response, (3) availability and 

continuity of biomarker data (i.e., linkage to effects), (4) adequate knowledge of mode of action, 

and (5) the perceived need for an updated OEL, based on the availability of new data.   

Ideally, exposure and effect biomarkers can be linked to predict dose-response behavior 

using biologically-based dose-response models that are structured based on detailed quantitative 

knowledge of the mode of action.  In most cases, however, such a quantitative level of 

understanding is not available, and alternative approaches are needed.  Thus, we demonstrate a 

suite of tools to validate and link biomarkers across the exposure-dose-disease continuum, 

ranging from qualitative analyses to a relatively novel Bayesian network analysis approach.  For 

illustrative purposes, multiple analysis and validation approaches are described for the case study 

in this paper.  However, it is envisioned that the system is most useful as a set of options, with 
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the user choosing the analytical approach(es) appropriate to the data set and needs of the 

analysis.  In the case study, the Bayesian network is also used to quantitatively integrate data on 

biomarkers and effects in a dose-effect biomarker-disease response analysis to determine a point 

of departure based on data spanning the continuum, as opposed to the conventional approach of 

using either effect or biomarker data exclusively in the dose-response assessment.  A goal of this 

work is to identify a range of tools for critically evaluating biomarkers, as well as to provide a 

quantitative approach for linking changes in biomarkers of effect (also called precursors to the 

adverse effect) both to exposure information and to changes in disease response.  Such linkage 

can provide a scientifically valid point of departure that incorporates precursor dose-response 

information without being dependent on the difficult issue of a definition of adversity for 

precursors.     

 

METHODS AND RESULTS 

 

Biomarker Data Search 

The biomarker data were extracted from a review of the data on biomarkers, toxicology, 

and information on the underlying biology of the case study chemical, benzene.  Relevant studies 

were identified by searching the literature using the National Library of Medicine TOXNET 

cluster of databases and the Medline database, from recent comprehensive toxicology reviews, 

and by contacting researchers familiar with benzene toxicology.   

 

Biomarker Database 
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The systematic documentation and integration of the diverse types of biomarker data 

obtained from multiple studies required developing a biomarker database.  We developed a 

customized biomarker database in Microsoft Access® to house data related to benzene 

biomarkers and document study selection.  The relational database included four levels: 1) 

general study information; 2) species or cell type investigated; 3) specific information on 

biomarkers reported; and 4) dose-response data.2 

 

Categorization of Inputs 

Studies were categorized as providing information on one or more biomarker types: 

exposure, internal dose, effective dose, early effects, mild effects, severe effects, or 

susceptibility.  These categories have been well described elsewhere and we applied definitions 

consistent with those provided in risk assessment guidance documents (e.g., EPA, 1994).  This 

initial categorization step provided documentation of the range of studies identified and served as 

an initial screening point to allow for additional targeted literature searches that focused on 

biomarkers of most interest. 

The disease endpoints considered in this analysis were anemia, leukopenia, and acute 

myeloid leukemia (AML).  Central nervous system (CNS) effects were not included in the 

analysis, since they are most relevant following acute high-level exposures and likely result from 

a different mechanism than that for the blood effects.  Although the mechanism of action of 

benzene’s effects on hematological outcomes is not fully known, there are several potential 

biomarkers of benzene exposure or of effects of exposure, and several have been linked to 

clinical disease. The identified biomarkers were classified as biomarkers of exposure (Table 1A) 

or effect (Table 1B).  
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The remaining steps in the decision support system were applied to a subset of the 

database consisting of those studies that met the following criteria: 1) measured endpoints had 

accompanying exposure estimates; 2) the endpoints evaluated were those most relevant to the 

diseases (adverse effects) under consideration, based on prior knowledge about possible modes 

of action; and 3) study quality was adequate to yield reliable estimates.  In addition, the 

preference was to use studies with multiple endpoints spanning the exposure-disease continuum 

in the same population, but few studies that evaluated multiple endpoints across the continuum 

were available, and so this criterion was not used to exclude studies.  A total of 27 studies were 

retained after applying these screening criteria for data adequacy to the larger pool of available 

studies identified in the published literature.  Of these studies, 21 included exposure biomarkers 

and 12 included effects biomarkers, including the range of biomarkers in Tables 1A and 1B.  

(See Supplemental Material for additional study details.)  The effect biomarkers were evaluated 

against the endpoints listed in Table 1C.   

 

Data Evaluation 

While there were multiple human studies providing data for most of the biomarkers of 

exposure (except for the albumin adducts and urinary benzene triol), for most of the biomarkers 

of effect, there was only one useful human study that tied the biomarker data to exposure 

measurements.  In addition, for two of the effect categories, all or most of the available 

biomarker data came from only one study.  Possible exposure biomarkers considered included 

benzene in the blood, urine, and exhaled air; urinary levels of the benzene metabolites 

trans,trans-muconic acid (ttMA), S-phenylmercapturic acid (SPMA), catechol, benzene triol, and 

phenol; and protein adducts formed by benzene metabolites.   
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A significant challenge in developing quantitative evaluation approaches that combine 

diverse data types is the need to format data in a manner that maintains the integrity of the data, 

but allows for combining datasets.  For studies meeting the study adequacy criteria described 

above, biomarker data were normalized to facilitate inter-study data comparisons and the 

combining of studies for the validation analysis.  This was done by converting common 

endpoints reported in different studies to the same response units, and then normalizing all data 

relative to some nominal response level.   

Data were collected from several studies of different groups with different exposure 

scenarios and experimental designs.  To enable quantitative analysis, the data were grouped into 

exposure categories determined by examining the range of exposure (as reported by the study 

authors) associated with the various candidate biomarker and disease observations.  The data 

were ordered by increasing exposure concentration, and cut-points for the exposure categories 

were chosen with the goal of spreading the observations as evenly as possible over the exposure 

categories.  For example, the exposure ranges were chosen so that observations of AML were in 

different exposure groups, rather than being lumped together.  Using the ranges of exposures also 

facilitated the evaluation of the linkage across the exposure-disease continuum, since various 

biomarkers and effects were grouped together in a common exposure category.  The eight 

resulting exposure groups were 0 up to 0.01 ppm, 0.01 up to 0.5 ppm, 0.5 up to 1.5 ppm, 1.5 up 

to 3 ppm, 3 up to 10 ppm, 10 up to 25 ppm, 25 up to 50 ppm, and 50 ppm and greater.  While the 

selection of cut-points was an ad hoc exercise for this demonstration project, it is a typical meta-

analysis approach for analysis of epidemiological data. 

 

Biomarker Analysis and Validation 
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The generic decision support system was designed to accommodate the use of a suite of 

analysis validation tools.  The particular tools used for a given chemical will vary depending on 

the nature of the dataset available.  For the benzene case study, the analytical tools were 

qualitative analysis using the Hill criteria (EPA, 2005), qualitative graphical analysis, linear 

regression, and Bayesian network modeling.  While use of the entire range of tools may not have 

been needed to identify appropriate biomarkers for this case study, the results illustrate the 

strengths and weaknesses of the different tools.  In addition, sufficient data were available to use 

the power of the Bayesian network to quantitatively incorporate the biomarker data into the dose-

response analysis.  Other chemical data sets will require only simple regression tools to identify 

the appropriate biomarkers, or the potential mechanisms of action may not be sufficiently known 

to implement the more powerful quantitative approaches.   

The various biomarkers of exposure and effect were ordered into pathways hypothesized 

based on knowledge of mechanisms of action to lead to the relevant endpoints.  The initial 

identification of mechanistic pathways allowed for several alternative pathways from ambient 

exposure to benzene-induced anemia, leukopenia, and AML (Figure 2).  Two pathways to 

anemia were considered.  One pathway involved disruption of heme synthesis, and several 

biomarkers in the heme synthesis pathway were considered.  The other possible pathway for 

benzene-induced anemia begins with decreases in blood progenitor cells, which may be caused 

directly by cytotoxicity mechanisms or secondary to genotoxicity.  Decreases in progenitor cells 

could also lead to leukopenia.  Three possible pathways to AML were considered, with multiple 

biomarkers considered for each pathway.  The pathways considered involved (1) genotoxicity, 

(2) oxidative stress (which could lead indirectly to DNA damage), and (3) changes in gene 

expression related to cell proliferation.   The potential pathways identified were based on current 
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information on mode of action hypotheses with putative biomarkers for which data amenable to 

analysis were available.3     

The first approach for validation and analysis of the proposed pathways involved 

qualitative application of the Hill criteria of (1) consistency, (2) strength of association, (3) 

specificity, (4) temporal relationship, (5) biological plausibility/coherence, and (6) dose-response 

relationship (EPA, 2005).  Biological plausibility/coherence was evaluated against current 

hypotheses in benzene mechanisms as articulated in several recent comprehensive toxicity 

reviews (Bird et al., 2005; Eastmond et al., 2001; Smith, 1996).  All of the biomarkers under 

consideration passed this criterion.  To evaluate the Hill criterion of temporality, one would 

ideally compare the duration of exposure required for changes in biomarker levels compared 

with the duration required for effects on disease incidence.  This was not possible, however, 

given the nature of the datasets evaluated (human epidemiology studies with undefined or only 

longer-term exposures).   In lieu of this information on temporal patterns of exposure and 

response, a qualitative approach was taken, using a general mode of action understanding to 

judge whether each biomarker would be expected to be affected prior to the clinical outcome of 

concern.  

Specificity is the weakest of the Hill criteria, and the least likely to be fulfilled.  As is 

commonly seen with effect endpoints and biomarkers, none of the effect biomarkers are specific 

to benzene.  The specificity of several of the exposure biomarkers was reviewed by ACGIH 

(2001) in its consideration of biological exposure indices (BEIs).  The measures of benzene 

internal dose, benzene in blood, urine, and breath, are specific to benzene.  ACGIH (2001) 

considered the urinary levels of the benzene metabolites ttMA and SPMA to be sufficiently 

specific that both were adopted as recommended BEIs.  Neither of these compounds are 
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themselves toxic agents, although ttMA is produced by the oxidation of the toxic intermediate 

trans,trans-muconaldehyde.  In contrast to SPMA and ttMA, urinary levels of the benzene 

metabolites hydroquinone, catechol, 1,2,4-benzene triol, and phenol are not specific to benzene, 

because, in addition to reflecting benzene exposure, these levels may also reflect direct exposure 

to these chemicals or exposure to other chemicals that are metabolized to the same compounds.  

Albumin adducts of benzene oxide (BO) and 1,4-benzoquinone (BQ) are fairly specific, and 

reflect internal dose of reactive metabolites that have been proposed to cause the hematotoxic 

and leukemogenic effects of benzene.  Because specificity is a weak criterion, this criterion alone 

was not used to exclude potential biomarkers.   

Regression analyses were used to evaluate the consistency of the association between 

environmental exposure to benzene (in ppm) and biomarkers of exposure (Table 2).  This was 

done by estimating the coefficient of determination4 (R2).  The selection of potential biomarkers 

based on coefficients of determination is somewhat arbitrary, but, when coupled with the other 

Hill criteria, this approach can be informative.  The regression analysis was conducted both for 

the entire concentration-response range observed, and for exposures only at lower concentrations 

in the range of regulatory or toxicological significance (i.e., up to approximately 1 ppm).  

Regression analysis was not performed for albumin adducts with 1,4-benzoquinone or benzene 

oxide, or for urinary benzenetriol, because there were only three observations and no 

observations below 1 ppm (except for the control values) for these metabolites.   

The benzene metabolites were generally much better markers of exposure than were 

benzene in urine, breath, or blood (Table 2).  Both urinary ttMA and SPMA correlated well with 

benzene exposure, consistent with the ACGIH (2001) recommendation of these metabolites as 

BEIs for benzene exposure.  Correlation with benzene exposure at low concentrations was better 
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for urinary ttMA than for urinary SPMA.  Correlation at low benzene exposures was poor for 

other metabolites, consistent with the ACGIH (2001) conclusion that those metabolites were not 

specific and sensitive enough in the low exposure range.  Overall, only two biomarkers of 

exposure had acceptable correlation coefficients both overall and in the low concentration range, 

urinary ttMA and benzene in blood (BB).  ACGIH (2001) considered benzene in blood to be a 

specific and sensitive biomarker, but noted that it is markedly affected by current or recent 

exposure, rather than average or cumulative exposure.  Based on these considerations, urinary 

ttMA and BB were included in the initial Bayesian network modeling described below; only 

ttMA was chosen for the final network.   

To evaluate the Hill criteria of consistency and dose-response for biomarkers of effect, 

the values of such markers from multiple studies were plotted together and graphical 

comparisons were used to evaluate the various candidate precursors to AML (Figure 3), as well 

as for anemia and leukopenia (data not shown).  As noted earlier, data were normalized to 

facilitate presenting multiple different endpoints on the same graph.  For many of the biomarkers 

of effect, only one appropriate human study was available, limiting the ability to evaluate 

consistency.  Moreover, in considering the dose-response, a key decision was choosing an 

appropriate dose metric; a common dose metric was needed in order to analyze the relationships 

among the various endpoints.  AML incidence is generally analyzed as a function of cumulative 

exposure (e.g., ppm-years of exposure).  On the other hand, measured values of exposure 

biomarkers are more likely associated with shorter term exposure than with cumulative exposure, 

due to clearance of metabolites from the body, the turnover rate of blood cells where the markers 

where observed, or other recovery mechanisms during periods with no exposure.  Assuming that 

average exposures are relatively constant over periods of months to years - despite potential 
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acute exposure fluctuations - using chronic time-weighted average (TWA) exposure will be a 

good surrogate for both cumulative and short-term exposures of interest.  This assumption is 

appropriate for risk assessments for the types of effects of interest for benzene that are likely to 

be due to toxic mechanisms resulting from longer-term cumulative exposures.  Therefore, the 

analyses shown in Figure 3 were based on TWA, using either average exposure concentration 

data reported by the authors or using average exposure duration to convert from ppm-years to 

TWA.  Several of the biomarkers considered had dose-response curves that were not consistent 

across studies or across dose groups within a study; these were excluded from further validation 

and, for clarity, are generally not shown in Figure 3. 

The graphical analysis of the biomarkers of effect was a fairly crude qualitative 

evaluation, based on the shape and position of the biomarker response curve relative to the 

disease response curve.  We considered this qualitative information more informative than 

regression analyses for the effects biomarkers, in light of the limited data for each biomarker and 

the inconsistencies in the leukemia dose-response (even though all of the dose-response data for 

leukemia were from a single study5).  A key consideration is that the biomarker curve should rise 

before, that is to the left of, the disease response curve, but in order to be predictive of disease, it 

must not plateau or level off before an increase in the disease response is apparent.  Despite the 

limitations of this approach, some broad conclusions are possible, based on comparison of the 

biomarker curves with that for leukemia. 

Based on inspection of Figure 3, the most consistent precursors to AML are the 

genotoxicity markers of hyperdiploidy in chromosome 7, micronuclei, and the oxidative stress 

marker 8-OHdG in lymphocytes.  Each of the curves for these three markers exhibited smooth 

dose-response curves that appear to rise above background levels slightly before an increase in 
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AML incidence is observed.  The micronuclei and 8-OHdG curves also have some data at higher 

doses where these markers appear to plateau or level off, which improves the dose-response 

characterization, since steep dose-response curves at high doses may make predictions at high 

doses more uncertain.  The hyperdiploidy and aneusomy data are somewhat limited, with only 

three data points, missing both a plateau and data in the range where AML incidence begins to 

increase.  This lack of key data introduces uncertainty and degrades the dose-response 

characterization.  Furthermore, aneusomy appears to begin increasing at doses higher than those 

that cause AML, and the dose-response curves for aneusomy and AML clearly cross, which 

would not be expected if aneusomy causes AML.  The single strand breaks (SSB) and breakage 

at chromosome 9 had dose-response curves that were not inconsistent with AML, but these 

curves increased very sharply (and before any apparent increase in AML incidence in the case of 

SSB) and were not observed to peak or level off, limiting their utility for dose-response 

modeling.  Based on this application of the Hill criteria, micronuclei, hyperdiploidy, and 8-

OHdG were identified as the best AML precursors from the available datasets for use as 

candidates for the next phase of the validation scheme (Bayesian network analysis, see below). 

Red blood cell count was the marker chosen to represent the anemia endpoint, since the 

red blood cell abnormalities did not have a consistent dose-response.  Based on consideration of 

the biology of erythropoiesis, which was generally consistent with the graphical analysis for the 

anemia pathway, the Bayesian network model included effects on one marker from the heme 

synthesis pathway (ALA in erythrocytes), hemoglobin, and the progenitor cells. 

There was considerable inter-study variability in the observations of white blood cell 

counts (WBC).  As with the analysis for anemia, the blood progenitor cells behaved in a manner 

consistent with the biology of hematopoiesis, and both precursor cell types for which there was 
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adequate data, the “colony-forming unit -- granulocyte, erythrocyte, monocyte, megakaryocyte” 

cells (CFU-GEMM),  and “colony-forming units – granulocyte, macrophage” (CFU-GM), were 

included in the Bayesian network.  The one remaining Hill criterion, strength of association, was 

evaluated by examining parameters estimated for a Bayesian network, as described in the next 

section.  

 

Bayesian network 

Since data were available on endpoints spanning the exposure-response continuum, with 

multiple plausible pathways, we used a validation and dose response approach based on 

Bayesian network modeling.  

The Bayesian network approach is described in detail in Appendix B in the supplemental 

material and was constructed using MCSim (Bois et al., 2005) with supporting statistical 

analyses in Microsoft Excel®; the model code is presented in Appendix C of the supplemental 

material.  The network (Figure 2) was based on the hypothesized mode of action of 

hematotoxicity, the availability of adequate data from the screened pool of potential studies, and 

the results of the Hill criteria-based biomarker evaluation discussed above.  Benzene 

concentration and exposure biomarkers (i.e., urinary ttMA and benzene in blood) are combined 

into a single node in the schematic shown in Figure 2 for clearer presentation of the network, 

although separate arrows from benzene concentration and the exposure markers to the next level 

of early effect markers are present in the actual network.  In addition, the coded network allows 

for benzene concentration to act directly upon the effect markers so that it is possible for the 

validation analysis to reject poor biomarkers of exposure. 
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As described further in Appendix B, the Bayesian network is a series of power (for 

exposure markers only) and logistic regression equations describing the relationships between 

the nodes in the network (i.e., between the “steps” of the pathway, see Figure 2).  Briefly, each 

marker or disease endpoint (i.e., each node) shown in the network (except for benzene 

concentration in air) is represented by an equation with a constant term, and one slope term for 

each of the node’s parents (i.e., the nodes from which the arrows originate).  The network was 

calibrated, or fit to the data, via Markov Chain Monte Carlo (MCMC) simulation to find 

distributions for the parameters of the regression equations.  This calibration was followed by 

several analyses (“diagnostics”) performed to choose among competing biomarkers (e.g., 

different markers of genotoxicity) and to identify elements of the network of potential 

biomarkers that are most predictive of disease. 

The one remaining Hill criterion not addressed above, the benzene – exposure marker – 

effect marker – disease strength of association, was quantitatively evaluated by examining the 

estimates of the slope parameters in the Bayesian network.  Generally speaking, larger means 

and smaller variances for estimates of the slope parameters inter-relating the nodes of the 

network indicate stronger associations between the nodes.  (See Tables B1 and B2 of Appendix 

B in the supplemental material.)  Considerations in evaluating the strength of the association 

(and the confidence in that association) between benzene exposure, the various markers, and the 

disease outcomes included the sign and magnitude of the slope, the probability that the slope is 

positive, the standard error or uncertainty for the slope, and the correlation coefficients (not 

shown) between the disease and the various biomarkers.  All of these analyses were conducted 

based on the posterior distributions determined from the Bayesian analysis.  However, inclusion 

of nodes in the final network also took into account other considerations in addition the 
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magnitude of the slope parameter.  In some cases, the link between two markers was very strong, 

but there were very weak associations both up and down the network from the two closely 

associated markers.  In other cases, markers were included in the network based on the biological 

plausibility that they belonged in the mechanistic pathway to disease (e.g., BFU-E), even though 

the associations with its parents and daughters in the network were not the strongest. 

Figures 4 and 5 illustrate the evaluation of the probability that the slope from a precursor 

to disease is greater than zero when the distribution for that parameter is assumed to be normal.  

For the markers shown in figures 4 and 5, the slope is expected to be positive, and a higher 

probability indicates greater support for that assumption, while a smaller probability (e.g., 50% 

or less) reflects weaker association between the precursor and the disease.  In this case, the test 

indicates that 8-OHdG (Figure 5) is a better biomarker than micronuclei (Figure 4), because the 

slope parameter from 8-OHdG to AML is more likely to be positive (i.e., probability of 85% vs. 

61%).  The standard deviation of the slope parameters relative to their means were also 

compared (when a lognormal distribution was assumed) to help choose among competing 

biomarkers.  The analyses using the normal and lognormal assumptions were generally 

consistent regarding the biomarkers that were most appropriate to include in the network.  

Although the slope from 8-OHdG to AML did not have the greatest magnitude, it did have the 

smallest standard deviation relative to the mean, and was again indicated to be the best early 

effect biomarker for AML.  Thus, based on the database and decision support system used, 8-

OHdG was determined to be the best precursor of AML amongst the biomarkers examined. 

The diagnostics were less conclusive for validating biomarkers along the pathways to 

anemia and leukopenia.  This is likely due to sparse data along the pathway to anemia (e.g., for 

the heme synthesis pathway) and inconsistent dose-response data for the white blood cell counts.  
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However, based on the graphical comparison and knowledge of the mode of benzene toxicity, 

the pathways through the progenitor cells were also included in the final network of biomarkers.  

8-OHdG was also linked to CFU-GEMM in the final biomarker network based on the biological 

argument that oxidative stress or genotoxicity (for which 8-OHdG may be an indicator) could 

lead to reduced blood progenitor cell colony formation.  Since the network modeling of anemia 

and leukopenia was not very successful, these pathways are not discussed further in this paper. 

The resulting network of biomarkers with the strongest linkages to disease, using the 

diagnostics described above and the biological considerations just presented, is shown as the 

shaded pathway in Figure 2. 

 

Dose-Response Analyses 

Dose-response analyses for AML incorporating the validated biomarkers of exposure and 

effects were conducted using four approaches (Table 3).  The first three approaches were 

basically benchmark concentration modeling, using different dependent and independent 

variables, and corresponding definitions of the benchmark response (BMR).  First, a logistic 

model was used to directly evaluate the relationship between the concentration of benzene in air 

and AML.  This dose-response was conducted to provide a frame of reference for evaluating the 

impact of incorporating the biomarkers.  Second, a logistic model was used to evaluate the 

relationship between exposure biomarkers and AML, in order to derive the effective exposure 

biomarker value corresponding to the theoretical risk often used as the basis for development of 

OELs (i.e., 1/1000 incidence).  This effective exposure biomarker was then converted to an 

equivalent benzene exposure level using a power regression model relating the exposure 

biomarker to benzene concentration in air.  The third approach was analogous to the first 
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approach, except that the dependent variable was the validated precursor immediately preceding 

AML (8-OHdG).  The degree of precursor response used as the BMR was one control standard 

deviation from the control mean response (EPA, 2000).  The power and logistic models for the 

second and third approaches were fitted using maximum likelihood techniques in EXCEL.  In 

the fourth approach, a Monte Carlo analysis of the Bayesian network model was conducted using 

MCSim (Bois et al., 2005) to calculate the benzene concentration that, when propagated through 

the biomarker network, produced an AML response rate of 1/1000.  The results of these 

alternative biomarker-based dose-response analyses for the AML endpoint are shown in Table 3.   

As shown in Table 3, the median effective concentration of benzene in air (ECs) derived 

using the biomarker of exposure (i.e., urinary ttMA) and the precursor to disease (8-OHdG) are 

within a factor of two of the reference EC from the model of benzene in air versus disease.  

However, the network analysis results in an EC that is significantly lower than the reference EC 

from modeling benzene in air versus disease.  The network dose-response modeling approach 

was also attempted using hyperdiploidy as the key precursor to AML.  The resulting dose-

response (data not shown) was much more uncertain than that obtained using 8-OHdG.  This is 

further support of the conclusion that 8-OHdG is the preferred biomarker based on these data, 

although a definitive conclusion is not possible, due to the limitations of the data on biomarkers 

of genotoxicity used in the model.  

 

DISCUSSION 

The previous section demonstrated a systematic approach for comparing and choosing 

among exposure or effect biomarkers along the continuum from exposure to disease and for 

incorporating the chosen biomarkers in an exposure-biomarker-disease response analysis to 
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compute biomarker-based points of departure, ECs, for OEL derivation.  We have presented a 

case study to illustrate the utility of the different tools.  Additional work would be needed to fully 

develop a reliable OEL.   

In the case study of benzene, for each endpoint (AML, anemia, and leucopenia), a 

reference EC was estimated using the conventional approach of regressing disease response on 

benzene concentration in air.  Analyses using biomarker-based approaches were then conducted 

and compared to the conventional approach.  The values reported here are not intended to 

correspond directly to current OELs for several reasons: the calculated ECs are best estimates 

rather than lower confidence bounds, as would often be used in a full risk assessment; 

uncertainty factors were not considered; alternative biological models were not considered; and 

the ECs arise directly from data analysis and do not consider risk policy considerations often 

embedded in OEL determinations.   

The precursor-based EC, which was based on directly modeling the air concentration vs. 

the precursor data, is smaller than the reference EC.  This is the expected result for an evaluation 

of the concentration vs. precursor, since the precursor event occurs at a lower dose than the 

disease (or perhaps the same dose), and cannot have a higher threshold.  Issues surrounding the 

identification of relevant precursor events for direct use in risk assessment, and the definition of 

adversity have been a hindrance in developing consensus on risk values.  Recent risk 

assessments, such as for perchlorate (Ginsberg and Rice, 2005; Johnston et al., 2005; Strawson et 

al., 2005), provide an example of the debate surrounding this issue.   

The network-based approach presented here does not remove the need for clear 

articulation of causal proximity of a validated biomarker to the adverse effect of interest or for 

consideration of the degree of change in the ultimate endpoint of interest that is adverse.  
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Nevertheless, at the very least, it provides a systematic approach to determine whether a specific 

precursor event can be considered validated and thus become a candidate for this type of 

articulation.  Moreover, the use of a Bayesian network provides a quantitative approach for 

linking changes in precursors both to exposure information and to changes in disease response, 

thus providing a scientifically valid point of departure that incorporates precursor dose-response 

information without being dependent on the difficult issue of a definition of adversity for 

precursors when they are suggested for use directly as a point of departure.  The Bayesian 

network also provides a means to improve the dose-response estimate for the final endpoint by 

taking into account the dose-response information for earlier steps in the pathway leading to that 

endpoint.   

In our case study, for AML, the network dose-response model yielded a median estimate 

of the EC that was approximately an order of magnitude smaller than the reference EC based on 

the traditional dose-response of benzene in air versus AML.  This was apparently due to the 

presence of more information in the low-dose region where changes in 8-OHdG are detectable 

but effects on AML mortality are not.  The network incorporates all of the information from the 

exposure-response continuum, and the result suggests that incorporation of the more sensitive 

early effect markers (i.e., 8-OHdG) may help inform the AML response at lower exposures.  In 

this case, this results in a smaller estimate of the EC, though this will not be true in all cases, 

since it could result in higher estimates for other compounds.  

The use of 8-OHdG as a biomarker of oxidative DNA damage has met with some 

controversy due to uncertainties regarding human variability in background levels of oxidative 

DNA damage, the potential confounding of analyses due to ex vivo DNA oxidation, variability in 

the sensitivity of alternate detection methods, and the absence of a clear dose-response in some 
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epidemiology studies (Collins et al., 2004; Pilger and Rudiger, 2006; Angerer et al., 2007).  

Despite these complications, 8-OHdG remains a commonly used biomarker in many current 

studies.  Moreover, the benzene exposure study that was used for the quantitative analysis (Liu et 

al., 1996) in our study showed that a significant dose-response pattern for 8-OHdG was 

achieved, and reported that inter-laboratory variability does not preclude the importance of 

trends observed within a specific study.  Finally, 8-OHdG was one of several potential 

genotoxicity endpoints that were found to be useful for developing the dose-response analysis, 

and this consistency in the findings provides added confidence in our results.     

Bayesian networks have received much attention recently in the field of human health 

toxicology for application in the identification and analysis of gene regulatory networks (Dojer et 

al., 2006; Imoto et al., 2003; Toyoshiba et al., 2004; Toyoshiba et al., 2006).  However, to our 

knowledge, our application for identifying relevant linkages of biomarkers along the exposure-

disease continuum to support dose-response assessments has not been adequately explored.   

Although we have demonstrated the utility of this approach in the benzene case study, 

there were several limitations in that assessment.  The human data were too limited to evaluate 

the impact of several other biologically-plausible precursors to AML in the overall model.  This 

observation is useful as a validation tool as it identifies key biomarkers as candidates for 

additional data collection.  Even for 8-OHdG, only one set of adequate data in humans that 

linked biomarker and exposure data was available, limiting the degree to which consistency 

could be evaluated.   Thus, there are a variety of extensions of this proof of concept examination 

that might be needed for broader applicability of this method.  For example, we limited the 

analysis to in vivo studies, studies with human data, and exposure and effect biomarkers (but not 

susceptibility biomarkers).  It is possible that endpoints not analyzed in this case study due to 
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inadequate human exposure-response data for validation are actually important events in the 

exposure-response continuum, and therefore could be good biomarkers of exposure or effects for 

benzene.  Significant data on benzene biomarkers has been collected in animals and in 

mechanistic in vitro studies (e.g., Au et al., 2002; Bird et al., 2005; Faiola et al., 2004).  There is 

opportunity for an enhancement to the current method related to combining data from these 

diverse sources.   

PBPK and biologically-based dose-response models are likely to be important for such 

enhancements.  The approach using Bayesian network models presented above should allow 

inclusion of biomarkers in the dose response for chemicals lacking complex biological models, 

but refinements of the linkages in the network can be supplied as such models are defined.  For 

example, PBPK models may define the linkages between exposure and biomarkers of exposure, 

and allow the integration of data across multiple species.  Such models, including the recently 

published human PBPK model for benzene (Yokley et al., 2006), could be used to refine the 

analysis presented here. 

The methods demonstrated here showcase the potential impact of using biomarker 

information to estimate points of departure in support of the OEL development process.  The 

Bayesian network technique, in particular, appears to be a novel approach for validation and use 

of biomarker data; it provides a scientifically and mathematically sound rationale for selection 

and analysis of biomarkers for occupational safety and health applications.  Extending the 

approaches we developed here to conduct a more complete analysis, whether for benzene or for 

other compounds, including human, experimental animal, and in vitro data, will be a focus of 

future work.  
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Footnotes   
1 We initially sought to evaluate a diversity of biomarkers for benzene, including animal studies 
and in vitro data, in light of the pilot nature of the study.  As a result of the wealth of data for 
benzene, we decided to exclusively study biomarkers derived from human studies as a simplified 
approach for this case study. 
 
2 Copies of the database are available from the authors upon request.  Although only human data 
were used for this demonstration project, the biomarker database was developed to accommodate 
data from animal and in vitro studies as well.   
 
3 The choices of potential biomarkers were limited by the decision, noted earlier, to use only in 
vivo human data.  However, this approach does not preclude the involvement of other relevant 
biological events, which were not included in the analysis due to the lack of adequate dose-
response data.   
 
4 The coefficient of determination is a goodness of fit statistic from ordinary least squares 
regression (range 0 to 1) interpreted as the proportion of variation observed in the dependent 
variable (e.g., urinary metabolite level) that can be explained by the regression model.  In other 
words, it estimates the proportion of the “error” that is explained by the model. 
 
5  Data were from the pliofilm cohort (Crump and Allen, 1985).  Individual data for this cohort 
were generously provided by Dr. Crump and Dr. Van Landingham at ENVIRON.   
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Figure Legends 

Figure 1.  Conceptual representation of the biomarker decision support system.  The sorting 
process is an iterative one, involving both judgments made prior to the analysis, and quantitative 
analysis to affect judgments.   
 
Figure 2.  Network of candidate biomarkers of benzene exposure and effect.  The structure of the 
network was based on the literature on benzene biology and hypothesized modes of action.  As 
described in the text, benzene concentration and exposure biomarkers (i.e., urinary ttMA and 
benzene in blood) are combined into a single node in the schematic shown in Figure 2 for clearer 
presentation of the network, although separate arrows from benzene concentration and the 
exposure markers to the next level of early effect markers are present in the actual network.  The 
biomarker of exposure included in the final network (ttMA) is bolded.  In addition, the coded 
network allows for benzene concentration to act directly upon the effect markers so that it is 
possible for the validation analysis to reject poor biomarkers of exposure.  Gray highlights show 
the final network of biomarkers of benzene exposure and effect with the strongest linkages to 
disease, based on analysis of the full network of candidate biomarkers.  ALA = delta- 
aminolevulinic acid; 8-OHdG = 8-hydroxyguanosine; CFU-GEMM = colony-forming unit -- 
granulocyte, erythrocyte, monocyte, megakaryocyte (a precursor cell type): BFU-E = burst-
forming unit – erythroid; CFU-GM = colony-forming units – granulocyte, macrophage; RBC = 
red blood cell count; ttMA = trans,trans-muconic acid; WBC = white blood cell count.  
 
Figure 3.  Graphical analysis of AML precursors.  Selected biomarkers of effect potentially 
related to AML, as well as the AML incidence, were plotted versus the concentration of benzene 
in air.  The responses have been normalized to put them on roughly the same scale to facilitate 
comparisons, so the vertical axis is arbitrary.  For clarity, only selected biomarkers are shown.  
Data are shown for individual biomarkers (e.g., aneusomy and hyperdiploidy) that are combined 
into one category (e.g., chromosome aberrations) in Table 1B.  
  
Figure 4.  Histogram of the uncertainty distribution for the slope from % micronuclei to AML in 
the full Bayesian network of all candidate biomarkers.  Pr (Slope > 0) = 61%, based on the 
posterior frequency distribution for this parameter from the MCMC calibration of the Bayesian 
network of potential biomarkers.  The histogram is based on 60,000 iterations of the Markov 
chain, that is, 20,000 from each of three independent chains.  The bins, or ranges of parameter 
values defined for the histogram, are shown on the horizontal axis, and the number of times the 
parameter value falls within each bin is counted for the vertical axis values. 
  
Figure 5.  Histogram of the uncertainty distribution for the slope from 8-OHdG to AML in the 
full Bayesian network of all candidate biomarkers.  Pr (Slope > 0) = 85%, based on the posterior 
frequency distribution for this parameter from the MCMC calibration of the Bayesian network of 
potential biomarkers.  The histogram is based on 60,000 iterations of the Markov chain, that is, 
20,000 from each of three independent chains.  The bins, or ranges of parameter values defined 
for the histogram, are shown on the horizontal axis, and the number of times the parameter value 
falls within each bin is counted for the vertical axis values.  



Table 1A.  Candidate Biomarkers of Exposure Included in the Validation Analysis 

Marker1 

  
Sources 

  
Qualitative 

Hill 
Criteria 

  

Regression
  

Bayesian 
Network 

  

Reason Excluded 

Benzene internal dose 
  

Blood benzene 

Ong et al., 1995; Eastmond et 
al., 2001; Bogadi-Sare et al., 

1997; Ong et al., 1996; Hotz et 
al., 1997; Popp et al., 1994; 

Verdina et al., 2001 

+2 + –2 
Outperformed by ttMA in Bayesian 
network, and does not represent 
metabolite in toxic pathway. 

Breath benzene 
Hotz et al., 1997; Egeghy et 

al., 2000; Sherwood and 
Sinclair, 1999 

+ –  Poor correlation at low exposure 
(probably due to outlier). 

Urinary benzene 

Lan et al., 2004; Ong et al., 
1995; Waidyanatha et al., 

2001; Ong et al., 1996; Qu et 
al., 2000; Fustinoni et al., 

2005 

+ –  Per L of urine (high interindividual 
variability), poor overall correlation. 

Metabolite internal dose 
  

Urinary ttMA 

Ong et al., 1995; Rothman et 
al., 1996; Liu et al., 1996; Ong 
et al., 1996; Hotz et al., 1997; 
Popp et al., 1994; Qu et al., 
2000; Boogaard and Sittert, 
1995;  Javelaud et al., 1998; 

Fustinoni et al., 2005; 
Verdina et al. 2001; 

Wiwanitkit et al., 2001 

+ + + 
Validated, best correlation with high 
and low exposure, best in Bayesian 
network. 

Urinary SPMA 

Eastmond et al., 2001; Hotz et 
al., 1997; Popp et al., 1994; 

Qu et al., 2000; Boogaard and 
Sittert, 1995; Rappaport et al., 

+ –  Poor correlation at low exposure. 



2005; Stommel et al., 1989; 
Verdina et al., 2001 

BQ-Albumin 
adducts Rappaport et al., 2005 –   Only 3 data points from a single 

study. 
BO-Albumin 
adducts Rappaport et al., 2005 –   Only 3 data points from a single 

study. 

Urinary 
hydroquinone 

Rothman et al., 1996; Ong et 
al., 1996; Hotz et al., 1997; Qu 

et al., 2000 
+ –  Poor correlation at low exposure. 

Urinary 
catechol 

Rothman et al., 1996; Ong et 
al., 1996; Hotz et al., 1997; Qu 

et al., 2000 
+ –  Poor correlation at low exposure. 

Urinary benzene 
triol Qu et al., 2000 – +  Negative dose-response, only 3 data 

points from single study. 

Urinary phenol 

Rothman et al., 1996; 
Rothman et al., 1995; Ong et 
al., 1996; Hotz et al., 1997; 
Popp et al., 1994; Qu et al., 
2000; Stommel et al., 1989 

+ –   Poor correlation and not specific to 
benzene exposure at low exposure. 

1 Abbreviations:  BO = benzene oxide; BQ = 1,4-benzoquinone; SPMA = S-phenylmercapturic acid; ttMA =  trans,trans-muconic acid (ttMA) 
2 The “+” indicates that the candidate marker was considered appropriate, and proceeded to the next stage of the validation process.  The "–" indicates the 
candidate marker was excluded in that stage of the validation process. 
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Table 1B.  Candidate Biomarkers of Effect Included in the Validation Analysis 

Marker1 
  

Sources 
  

Qualitative 
Hill 

Criteria 
  

Graphical 
Comparison 

  

Bayesian 
Network 

  

Reason Excluded 
  

Oxidative Stress  
Urinary 8-OHdG Rothman et al., 1995 + –2  Inconsistent dose-response 
Lymphocyte 8-OHdG Liu et al., 1996 + + + Validated 
Toxicogenomics  
CXCL16 Forrest et al., 2005 –   JUN expression chosen 
ZNF331 Forrest et al., 2005 –   JUN expression chosen 
JUN Forrest et al., 2005 + + – Outperformed by 8-OHdG 
PF4 Forrest et al., 2005 –   JUN expression chosen 
Genotoxicity  
N0 mutation  Rothman et al., 1995 –   only 2 observations 
NN mutation Rothman et al., 1995 –   only 2 observations 

Chromosomal aberrations 

Eastmond et al., 2001 ; 
Bogadi-Sare et al., 1997 ; 
Sarto et al., 1984 ; Zhang 

et al., 2002 

+ + – (hyperdiploidy) outperformed by 8-
OHdG 

Lymphocyte micronuclei Liu et al., 1996 + + – Outperformed by 8-OHdG 

Single DNA strand breaks 
Rothman et al., 1995 ;   

Garte et al., 2005 + –  Response increased sharply too early 
Stem cell cytotoxicity  
Colony forming units (CFU) 
(GEMM) 2 Lan et al., 2004 + + + Validated 
Colony forming units (GM) Lan et al., 2004  + + + Validated 
Burst forming units (E) Lan et al., 2004  + + + Validated 
LAPA (leukocyte alkaline 
phosphatase activity) Javelaud et al., 1998 –   Only measured at <= 0.2 ppm 
Anemia precursors  

Hemoglobin 
Lan et al., 2004 ; Fustinoni 

et al., 2005 + + – Outperformed by stem cell pathway 
Protoporphyrin Muzyka et al., 2002 + –  ALA in erythrocytes chosen 
Protoporphyrin-DNA adducts Muzyka et al., 2002 + –  ALA in erythrocytes chosen 
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Heme synthetase Muzyka et al., 2002 + –  ALA in erythrocytes chosen 
ALA synthetase Muzyka et al., 2002 + –  ALA in erythrocytes chosen 
ALA in erythrocytes3 Muzyka et al., 2002 + + – Outperformed by stem cell pathway 
ALA in lymphocytes Muzyka et al., 2002 + –   ALA in erythrocytes chosen 

 
1 Abbreviations:  ALA = delta- aminolevulinic acid; CFU-GEMM = colony-forming unit -- granulocyte, erythrocyte, monocyte, megakaryocyte (a precursor cell 
type); CFU-GM = colony-forming units – granulocyte, macrophage;  GSH = reduced glutathione; NBT = Nitroblue Tetrazolium .  To simplify the presentation, 
some of the markers shown reflect composites of multiple related markers.  For example, multiple markers of chromosomal aberrations were considered, 
including hyperdiploidy, aneusomy, and aberrations in several individual chromosomes. 
2 The “+” indicates that the candidate marker was considered appropriate, and proceeded to the next stage of the validation process.  The "–" indicates the 
candidate marker was excluded in that stage of the validation process. 
3 Included in the Bayesian network based on biological plausibility even though failed in graphical analysis due to limited data. 

 

Table 1C.  Endpoints Used for Evaluation of Biomarkers of Effect 

 

Endpoint 
  

Source 
  

Red blood cell counts 

Rothman et al., 1996 

Red blood cell abnormalities 
White blood cell counts 
White blood cell abnormalities 
Platelet counts 
Platelet abnormalities 
Acute myeloid leukemia Crump and Allen, 1984 

 

 
 

 



Table 2.  Coefficients of Determination from Linear Regression of Potential Biomarkers of 

Exposure vs. Exposure Level (ppm) 

 

Endpoint R2 (all) R2 (<~1 ppm) 

Blood benzene 0.37 0.25 

Breath benzene 0.77 0.02 

Urinary benzene 0.07 0.93 

Urinary ttMA 0.94 0.12 

Urinary SPMA 0.95 0.05 

Urinary catechol 0.93 <0.01 

Urinary hydroquinone 0.98 <0.01 

Urinary phenol 0.99 0.02 

 

 

Table 3.  Comparison of Biomarker-based Dose-response Approaches for Acute Myeloid 

Leukemia (AML) 

 

Approach BMR1 EC2 (ppm) 

Benzene in Air (ppm) vs. AML3 1/1000 7 

Urinary ttMA (mg/g Cre) vs. AML4 1/1000 4 

Benzene in Air (ppm) vs. 8-OHdG5 1 sd 5 

Network Analysis of AML6 1/1000 0.7 
1 Benchmark response, 1/1000 extra risk above background for AML or 1 control standard deviation from the 
control mean for 8-OHdG 
2 Effective concentration of benzene in air leading to the specified BMR  
3 Using a logistic model to directly evaluate the relationship between the concentration of benzene in air and AML 
4 Using a logistic model to identify a biomarker level corresponding to a 1/1000 incidence of AML, followed by 
back-calculation of the corresponding concentration of benzene in air 
5 Using a logistic model to evaluate the relationship between the concentration of benzene in air and increases in 8-
OHdG 
6 Using MCMC analysis of the Bayesian network  



Figure 1.  Conceptual Representation of the Biomarker Decision Support System 
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Figure 2.  Network of candidate biomarkers of benzene exposure and effect.   
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Figure 3.  Graphical Analysis of Precursors of Leukemia Incidence 
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Figure 4.  Histogram of the uncertainty distribution for the slope from % micronuclei to AML in 

the full Bayesian network of all candidate biomarkers.   
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Figure 5.  Histogram of the uncertainty distribution for the slope from 8-OHdG to AML in the 

full Bayesian network of all candidate biomarkers.   
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	ABSTRACT
	    INTRODUCTION
	To attempt to address this barrier, we describe a biomarker decision support system (Figure 1) to facilitate the systematic identification, documentation, validation, and incorporation of biomarkers into occupational risk assessment.  The steps in the decision support system are a) categorization of inputs; b) data evaluation; c) analysis and validation of biomarkers and dose-response; d)  development of the risk assessment output.  For the case study demonstrating the application of the decision support system, we extracted biomarker data from public databases or the appropriate literature,1 integrated the data into a user-friendly biomarker database of our design, analyzed the biomarker data using a suite of validation tools, and demonstrated the contribution of biomarker data in the dose-response assessment for occupational exposure limit (OEL) development.  We focus on application of the concept to occupational risk assessment, since biomarkers of exposure have a rich history of use in this area and because there is significant potential for biomarkers to enhance the scientific underpinnings in the development of OELs.  

	METHODS AND RESULTS
	Categorization of Inputs
	Studies were categorized as providing information on one or more biomarker types: exposure, internal dose, effective dose, early effects, mild effects, severe effects, or susceptibility.  These categories have been well described elsewhere and we applied definitions consistent with those provided in risk assessment guidance documents (e.g., EPA, 1994).  This initial categorization step provided documentation of the range of studies identified and served as an initial screening point to allow for additional targeted literature searches that focused on biomarkers of most interest.
	The remaining steps in the decision support system were applied to a subset of the database consisting of those studies that met the following criteria: 1) measured endpoints had accompanying exposure estimates; 2) the endpoints evaluated were those most relevant to the diseases (adverse effects) under consideration, based on prior knowledge about possible modes of action; and 3) study quality was adequate to yield reliable estimates.  In addition, the preference was to use studies with multiple endpoints spanning the exposure-disease continuum in the same population, but few studies that evaluated multiple endpoints across the continuum were available, and so this criterion was not used to exclude studies.  A total of 27 studies were retained after applying these screening criteria for data adequacy to the larger pool of available studies identified in the published literature.  Of these studies, 21 included exposure biomarkers and 12 included effects biomarkers, including the range of biomarkers in Tables 1A and 1B.  (See Supplemental Material for additional study details.)  The effect biomarkers were evaluated against the endpoints listed in Table 1C.  
	Data Evaluation
	Data were collected from several studies of different groups with different exposure scenarios and experimental designs.  To enable quantitative analysis, the data were grouped into exposure categories determined by examining the range of exposure (as reported by the study authors) associated with the various candidate biomarker and disease observations.  The data were ordered by increasing exposure concentration, and cut-points for the exposure categories were chosen with the goal of spreading the observations as evenly as possible over the exposure categories.  For example, the exposure ranges were chosen so that observations of AML were in different exposure groups, rather than being lumped together.  Using the ranges of exposures also facilitated the evaluation of the linkage across the exposure-disease continuum, since various biomarkers and effects were grouped together in a common exposure category.  The eight resulting exposure groups were 0 up to 0.01 ppm, 0.01 up to 0.5 ppm, 0.5 up to 1.5 ppm, 1.5 up to 3 ppm, 3 up to 10 ppm, 10 up to 25 ppm, 25 up to 50 ppm, and 50 ppm and greater.  While the selection of cut-points was an ad hoc exercise for this demonstration project, it is a typical meta-analysis approach for analysis of epidemiological data.


	DISCUSSION

